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Both formal reasoning and numerical calculations of spectral is operative (3, 5) . This is ultimately due to the fact that for
lineshape functions confirm that magnetic equivalence between a pair of like nuclei of spin-1

2 the J-coupling Hamiltonian
nuclei of spin greater than 1

2 is generally broken in presence of JjkIjIk can be expressed in terms of permutation operator
relaxation. This results in a dependence of the lineshape functions interchanging nuclei j and k (6) . The J-coupling between
on the values of J-couplings between the nuclei that would be nuclei j and k is totally irrelevant when interchange of j and
equivalent in absence of relaxation. Effects of this sort may be of k is a valid symmetry operation (macroscopic symmetry
practical importance for systems AnX , where the A nuclei are operation, see (5, 7)) on the molecular skeleton (3, 5) .
relaxed by quadrupolar interactions which are highly cross-corre-

However, for nuclei of spin greater than 1
2 the J-couplinglated at different A sites. q 1997 Academic Press

Hamiltonian cannot be described by a permutation operator
and, accordingly, the above property does not apply. In the
present contribution we briefly address the problem of mag-

The concept of magnetic equivalence, formulated in the netic equivalence between such nuclei in presence of relax-
early days of high-resolution NMR (1) , has further given ation. We consider spin systems An and AnX , where IA ú 1

2
rise to a common view that J-couplings between equivalent and IX Å 1

2, undergoing relaxation in the extreme narrowing
nuclei are totally irrelevant. However, in the framework of regime.
the standard NMR theory (2) a rigorous discussion of mag-
netic equivalence comprises only the so called ‘‘static

THEORETICAL BACKGROUND
limit,’’ with no account for random modulations of the spin
energy. Both theoretical analysis and numerical calculations

The high-resolution spin Hamiltonian of any system con-
reported in our previous papers (3, 4) showed that random

taining magnetically equivalent group An commutes with the
nuclear exchange may in some cases cause a breakdown

operator of the square of the total spin of An , F 2
A (2) . It

of the ‘‘static’’ magnetic equivalence (3) . Namely, certain
follows that J-couplings within An can be regarded as totally

transitions that are strictly forbidden in the static limit may
irrelevant as long as the focus is only on the ‘‘stick’’ pattern

gain nonzero intensity due to an exchange-induced coupling
of the spectrum, and the lineshape effects different than those

to the remaining, ever-allowed transitions. It is these former
due to field inhomogeneity are neglected. Moreover, the

transitions that can make the dynamic NMR spectra depen-
spectrum can be viewed as a superposition of stick spectra

dent on the J-couplings between equivalent nuclei. Similar
of independent spin isomers.

breaking of magnetic equivalance can be effected by certain
When relaxation effects are included, the system dynamics

NMR relaxation mechanisms (5) . Our previous simulations
is no longer governed by the sole spin Hamiltonian but by

(3, 4) performed for nuclear exchange reveal that the equiva-
the combined action of the latter and the Wangsness–Bloch–

lence breaking can cause extra problems in practical line-
Redfield (WBR) relaxation matrix (8, 9) according to the

shape analysis. The corresponding lineshape effects are too
WBR equation

large to be generally ignored but usually too small and too
unspecific to be used for an assessment of scalar interactions

dÉr … /dt Å 0iLÉr … / RÉr 0 r0 … , [1]within magnetically equivalent groups. Fortunately, for
equivalent groups comprising two and three spin-1

2 nuclei,
where L Å H 1 E* 0 E 1 H* is the system super-Hamilto-these additional difficulties disappear. For such groups the
nian derived from the spin Hamiltonian H . Accordingly,respective nuclear permutation symmetries, C2 and D3 , make

the offending couplings irrelevant in every instance, regard- instead of F 2
A , the constant of motion describing magnetic

equivalence in Liouville representation is the derivation su-less of what sort of exchange and/or relaxation mechanism
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200 S. SZYMAŃSKI

the dipole entering Eq. [2] are purely hypothetic. For theperoperator of F 2
A , F 2D

A Å F 2
A 1 E* 0 E 1 F 2*A . Obviously,

mechanisms that may be of practical significance, includingthe latter must commute with L given that the former com-
mutes with H but the commutativity need not automatically the RF mechanism with imperfect correlation, R and F 2D

A do
extend to R . The discussion of magnetic equivalence in not commute. In the following section it will be demon-
presence of relaxation requires thus a modified approach. As strated that such a lack of commutativity means a breakdown
an introduction into the problem we consider a hypothetical of magnetic equivalence. The most spectacular consequence
instance where F 2D

A does commute with R in consequence of such a breakdown is the fact that J-couplings within
of which the static concept of magnetic equivalence retains An group become spectroscopically relevant. In the present
its full validity also in this more general contex. In order that section we consider two instances where despite the lack of
the commutativity be ensured, the equivalent nuclei should commutativity of R and F 2D

A one can still speak of some sort
remain such also at the microscopic level. In other words, of magnetic equivalence. In both the instances an isolated
the random interactions leading to relaxation ought to be isochronous group An is dealt with.
describable in terms of the total spin of the equivalent group. First we consider such a group where at the microscopic
This would be feasible for the familiar random-field (RF) level the relaxation interactions involve single nuclei and
interactions (9) if the fields fluctuating at individual sites of not nuclear pairs, as is in the case of dipole–dipole (DD)
the A nuclei happened to be perfectly correlated. Such perfect interactions. As was once shown by Pyper (10) , for the
correlation does not seem physically possible, perhaps ex- former mechanisms the individual components, FzA and F{A ,
cept for an apparent RF mechanism deriving from spin- of the total spin of the system are eigenoperators of the
rotation interactions. On the other hand, the fluctuations need WBR relaxation matrix concerned with eigenvalues 1/T1
not be spatially isotropic. In a general ( i.e., anisotropic) and 1/T2 , respectively; these eigenvalues are independent
case, the corresponding relaxation matrix, R *RF , where the of the possible cross-correlations between the random inter-
prime is used to designate perfect correlation of the RF actions at individual nuclear sites. The operators FzA and F{A
interactions, can be expressed as (see, e.g., Ref. (7)) are also eigenoperators, concerned with eigenvalues 0 and

|v0,A , respectively, of the static superhamiltonian L . The
latter eigenvalues are obviously independent of the J-cou-R *RF Å 0FD

zAFD
zAa 0 1

2(FD
/AFD

0A / FD
0AFD

/A)b , [2]
pling terms occurring in L . Because the system’s observ-
ables F{A describing perpendicular magnetization evolve as

where FuA , with u standing for z , /, and 0, are the corre-
damped oscillations, the standard NMR spectrum of any Ansponding components of total spin of An , and superscript D
system of the above sort consists of a single Lorentzian linedenotes derivation superoperator; the quantities a and b are
and is independent of the J-couplings within the system.the spectral densities of the fluctuating magnetic field. The
Such situation would occur in particular for the quadrupolarcommutativity of R*RF with F 2D

A is a straightforward conse-
(Q) relaxation mechanism which is usually the principalquence of the commutativity of F 2

A with each of the total
mechanism for nuclei of spin greater than 1

2. In An systemsspin components FuA . As in the case of static equivalence,
matching the above relaxation pattern one can hardly distin-the system evolution will be described by the block of 0iL
guish independent spin isomers. For such systems the con-/ R *RF concerned with eigenvalue 0 of F 2D

A . Because not
cept of magnetic equivalence has therefore a different mean-only F 2D

A but its left- and right-translation components, F 2L
A

ing than in the static case.Å F 2
A 1 E* and F 2R

A Å E 1 F 2*A , commute with 0iL /
When relaxation interactions engaging nuclear pairs can-R *RF , this block will be blocked out further into independent

not be excluded, the operators FzA and F{A are no longersubblocks concerned with individual eigenvalues lL Å lR

eigenoperators of R and the above inferences become in-å l of the latter superoperators. These eigenvalues label
valid. Despite the fact that the most familiar mechanism ofindividual spin isomers of An . The above formalism allows
this sort, the (DD) mechanism, is marginal for nuclei ofone to see that the static magnetic equivalence would indeed
spin greater than 1

2, it will be considered in order to renderbe conserved for any spin system containing group An pro-
our discussion complete. When DD interactions are ac-vided that relaxation behavior of the latter be describable by
counted for, only for an isochronous two-spin system canthe matrix of Eq. [2] . (Some formal problems which arise
one speak of some sort of magnetic equivalence, providedfor groups composed of more than 2 nuclei (3) will not be
that an additional condition is fulfilled. Namely, it is requiredconsidered here because they do not affect the validity of
that the WBR relaxation matrix describing the DD and otherthe above conclusion.)
possible mechanisms operating in system A2 be invariantFrom a formal point of view, the conservation of equiva-
under arbitrary rotations. In the extreme narrowing limit,lence would be warranted when the relevant relaxation ma-
the spherical symmetry of R occurs for any system, nottrix could be expressed in terms of arbitrary multipoles of
necessarily isochronous, for which relaxation interactionsthe total spin of An . However, to the author’s knowledge,

relaxation mechanisms involving the multipoles other than involving chemical shift anisotropy (CSA) can be neglected
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(as in the whole discussion, it is implied here that only the kets Élm) can be Clebsch–Gordan coupled with the bras
spatially isotropic solvents are considered). For an isochro- ( l*m*É to produce the required tensor operators TL

km (11, 12) .
nous system, the spherical symmetry properties are extended It is the specificity of a symmetric two-spin system that
to the system’s super-Hamiltonian referenced to the frame vectors Élm) are already adapted to the intrinsic permutation
rotating with the resonance frequency. v0A , since in such a symmetry S2 å C2 : vectors concerned with the same com-
frame the only nonvanishing term of L is the (by definition, posite spin l are all either symmetric or antisymmetric under
scalar) J-coupling term. A convenient basis to represent the C2 , depending on whether the symmetry index, (01)2 IA0 l ,
WBR equation for an isochronous system with spherical is /1 or 01. Operators TL

km of proper symmetry will be
symmetry is an operator basis comprising irreducible spheri- obtained only from the shift operators Élm)( l *m *É where
cal tensor operators TL

km , where L is the tensor rank, m Å both l and l* are either even or odd. Taking this into account
0L , 0L / 1, . . . , L 0 1, L enumerates individual tensor and considering the fact that coupling of tensors of ranks l
components, and k is a collective label distinguishing differ- and l* can yield tensors of ranks L Å Él 0 l *É, Él 0 l *É / 1,
ent (orthogonal) tensors of the same rank. These tensor oper- . . . , l / l *, we immediately see that the number of properly
ators are simultaneous eigenoperators of the superoperator symmetrized tensors T 1

k is indeed 2IA , as was already antici-
generating rotations about the z axis, FD

zA , pated in the comment to Eq. [4] ( it is the number of sets
of the shift operators for which l Å l *, where l ú 0, since
the operators for which Él0 l *ÉÅ 1 are not properly symme-FD

zAÉTL
km … Å mÉTL

km … , [3a]
trized). We moreover see that the relevant rank-zero opera-
tors T 0

00 , T 0
10 , . . . , T 0

l0 , . . . are linear combinations of shiftand of the Casimir superoperator,
operators from the respective sets {É00)(00É}, {É1m)(1mÉ,
m Å 01, 0, 1}, . . . , {Élm)( lmÉ, m Å 0l , . . . , l }. . . . There[FD

zAFD
zA / 1

2(FD
/AFD

0A / FD
0AFD

/A)]ÉTL
km …

will therefore be exactly 2IA / 1 (orthogonal) operators
Å L(L / 1)ÉTL

km … . [3b] T 0
l0 , all of which will necessarily commute with Fz and F{ .

Because T 0
00Fu Å 0, where u stands for z and {, only the

By virtue of Wigner–Eckart theorem, in such a basis the operators T 0
l0 with l Å 1, 2, . . . , 2IA will be of use in Eq.

blocks of L and R concerned with individual eigenvalues, [4] , and accordingly, the rank-1 tensor operators obtained
m, of FD

zA will be blocked out further into subblocks corre- in this way will form a complete basis set in the interesting
sponding to individual ranks L . The system observables FzA subspace. These basis operators correspond to individual
and F{A constitute a tensor operator of rank 1 so that the spin isomers of nonzero spin. Because both Fu and T 0

l0 com-
evolution of a spherically symmetric system is confined to mute with I1I2 , the evolution of system’s observables will
the subspace spanned by rank-1 tensor operators. Following be unaffected by the J-coupling. Unlike in the An system
the theory outlined in Refs. (5, 11) , we give a closer descrip- considered at the beginning of this section where for any n
tion of the relevant rank-1 tensor operators for system A2 . there occurs only a single Lorentzian, in the presence of a
We show that all (unnormalized) rank-1 operators which DD mechanism the spectrum of system A2 will in general
fulfill the requirements of the intrinsic permutation symme- have a complex structure. It can consist of up to 2IA Lorentzi-
try of A2 can be obtained from the system observables by ans centered at the same frequency but having different
multiplying the latter by appropriate, mutually orthogonal widths and different integral intensities. Individual spin iso-
tensor operators of rank 0, T 0

k0 , mers (of nonzero spin) do not evolve independently so that
each of these Lorentzians describes a combination of the
spin isomers. As in the preceeding case, for the system A2T 1

k Å {T 0
k0FzA , T 0

k0F/A , T 0
k0F0A}, [4]

considered presently one can speak of magnetic equivalence
only in a limited sense. The most important conclusion iswhere k Å 1, 2, . . . , 2IA . The justification for setting the
that the NMR spectrum of such a system is independent onnumber of the relevant rank-1 tensors at 2IA will be given
the J-coupling between the A nuclei.later on.

As a basis in Hilbert space of system A2 we take the set
MAGNETIC EQUIVALENCE BROKEN BY RELAXATIONof state vectors which are the simultaneous eigenvectors,

Élm) , of the total spin squared, F 2
A , and FzA operators,

Isochronous systems. For an isochronous system com-
prising more than two nuclei, not all of the relevant rank-1F 2

AÉlm) Å l( l / 1)Élm) [5a]
tensor operators commute with IkIl . The J-couplings within

FzAÉlm) Å mÉlm) , [5b] the group can therefore influence the spectrum when the
DD relaxation mechanism is operative. The Lorentzian lines
constituting the spectrum will no longer be all centered atwhere l Å 0, 1, . . . , 2IA and m Å 0l , 0l / 1, . . . , l 0 1,

l . Under rotations these behave as irreducible tensors so that the same frequency. Their phases, positions as well as widths
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202 S. SZYMAŃSKI

lated DD–CSA mechanisms, in which instance the spherical
symmetry of R is lost. A closer look at this prototype system
seems instructive. As illustrated in Fig. 1, the calculated
lineshape function of the A2 group becomes dependent on
the assumed magnitude of JAA . In (anisochronous) systems
AX cross-correlation between DD and CSA interactions can
bring about asymmetry to the otherwise symmetric A and X
multiplets (13, 14) . In our case the unresolved signal be-
comes slightly asymmetric when JAA is different from zero,
and the lineshapes calculated for the values of JAA of opposite
signs are mirror images of each other. By virtue of the rela-
tionship referred to in the Introduction, the spectrum of a
pair of isochronous spin-1

2 nuclei would in no instance be
FIG. 1. Theoretical spectra of an A2 system, with IA Å 1, for the dis-

dependent on the J-coupling constant (3, 5) .played values of JAA , in presence of DD, CSA, and cross-correlated CSA–
A closer explanation of the effects demonstrated in Fig.CSA and DD–CSA relaxation mechanisms. The assumed spectral densities

are 0.008, 0.032, 0.030, and 0.014 Hz, respectively; the normalization of 1 can be gained from a consideration of the evolution of
the pertinent irreducible spherical tensor superoperators entering R is the the perpendicular magnetization in an appropriate operator
same as in Ref. (7) . The cross-correlation coefficients for CSA interactions basis. When rotational symmetry is lost, the evolution will
at different nuclear sites and for DD–CSA interactions are 0.94 and 0.87,

no longer be confined to the subspace of rank-1 tensors ofrespectively.
Eq. [4] but will proceed in the whole symmetry-adapted
subspace of eigenoperators of FD

zA concerned with eigenvalue
1. Considering the permutation symmetry properties of the

and intensities will all be dependent on the J-couplings vectors Élm) defined in Eqs. [5a] and [5b], we see that the
within the isochronous group. The actual structure of the relevant subspace has 8 dimensions. The (orthonormal) shift
spectrum will also be dependent on the magnitude of IA and operators spanning the subspace are listed in Table 1. In this
on the symmetry of the spatial arrangement of the nuclei operator basis the J-coupling super-Hamiltonian is diagonal,
(5) . In order to gain some insight into the consequences and its eigenvalues are equal to zero for the basis operators
of such a breakdown of magnetic equivalence, lineshape listed as items 1 to 6. The first four of these basis operators
calculations of standard single-quantum spectra for systems represent the spin isomer of composite spin l Å 2 and the
A3 with IA Å 1, 3

2, and 2, were performed assuming that the remaining two the spin isomer of l Å 1. All of these six
only relaxation mechanism is the DD mechanism. The com- shift operators involve transitions that are allowed by the
puter program used in the calculations is a mutation of our static magnetic equivalence symmetry since the correspond-
unpublished program RELAXAN to calculate WBR relax- ing transition amplitudes, proportional to Tr[Élm 0
ation matrices for multispin systems according to the formal- 1)( lmÉF/A] Å ( lmÉF/AÉlm 0 1), are all nonvanishing. The
ism exposed in Ref. (7) .1 The calculations were carried out last two items in Table 1 represent transitions that are strictly
for different input values of JAA . As predicted theoretically, forbidden in the static limit. The pertinent (diagonal) ele-
the calculated spectral lineshapes have proven dependent on ments of L in the rotating frame are 6pJAA ( item 7) and
JAA . The dependence was however very weak unless high 06pJAA ( item 8). If R had spherical symmetry, all off-
cross-correlation coefficients were assumed for random DD diagonal elements of R between the basis operators 7 and
interactions for different nuclear pairs. (It must be added
that in a three-spin system whose natural geometry is an

TABLE 1equilateral triangle such high cross-correlations could not
Basis Operators Describing Evolution of Perpendicular Mag-occur) . It should be added that calculations of spectral lines-

netization of System A2, with IA Å 1, in Absence of Sphericalhapes for the systems for which the theory of the preceeding
Symmetry

section predicts no such dependence fully confirmed the pre-
diction: Irrespectively of the input values of the J-coupling Item Operator
constants, the calculated lineshape functions were identical

1 É21)(22Éto all seven digits displayed on output.
2 É20)(21ÉIn search of the simplest example where magnetic equiva-
3 É20 1)(20É

lence is broken by relaxation we considered the A2 system, 4 É2 0 2)(2 0 1É
with IA Å 1, in the presence of DD, CSA, and cross-corre- 5 É10)(11É

6 É1 0 1)(10É
7 É2 0 1)(00É

1 Collaboration with Professor Adam Gryff-Keller in developing and test- 8 É00)(21É
ing the program RELAXAN is gratefully acknowledged.
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8 and the basis operators 1 to 6 would vanish. The evolution ber that the desired spherical symmetry factoring of RQ

would be achieved only in a basis that is irreducible underof the system observables would then be confined to the
rotations in the space of the sole A spins. On the other hand,subspace spanned by operators 1 to 6 and would not be
the A–X coupling term would undergo factoring only inaffected by the J-coupling. Moreover, as shown in the pre-
such spherical basis which is irreducible under rotations inceeding section, by the use of the irreducible spherical basis,
the entire spin space, including both A and X spins. Becausethe subspaces spanned by operators 1 to 4 and those 5 and
no spherical basis is simultaneously irreducible under rota-6 could be reduced to one-dimensional subspaces of the
tions of the entire system and of its A part only, use ofirreducible operators T 1

21 Å T 0
20F/A and T 1

11 Å T 0
10F/A , re-

spherical bases in the following discussion would be unpro-spectively, without any lost of information. When, as in the
ductive. It would also be factitious to keep the nonsecularcase considered presently, R lacks spherical symmetry, the
part of the J-coupling between A and X , because hetero-off-diagonal elements of R between basis operators 7 and 8
nuclear spin-locking experiments are out of scope of theand those 1 to 6 are nonvanishing, and accordingly, all eight
present article.dimensions of the symmetry-allowed, single-quantum sub-

First we consider the spectrum of the A part. Again ourspace are relevant. Due to mediation of the above off-diago-
goal is to identify the subspace describing the system’s evo-nal elements of R , the transitions that are strictly forbidden
lution. It can be done easily by repeating the action of thein the static limit can now borrow intensity from the re-
relevant part, 0i(LAX / LA) / RQ / RX , of the evolutionmaining, ever-allowed transitions. Hence the evolution of
superoperator on the observable ÉF/A … (where LAX and LAthe magnetization and, accordingly, the spectral lineshape
describe the secular part of the A–X coupling and the J-can become dependent on the J-coupling between the A
couplings between A nuclei, respectively) . Straightforwardnuclei, as has been confirmed by the numerical calculations.
calculations invoking the already quoted result by PyperWhen the value of JAA assumed in the calculations is large
(10) reveal that when IX Å 1

2 the evolution is confined to acompared to the pertinent off-diagonal elements of R , these
two-dimensional subspace spanned by the two eigenopera-elements are strongly nonsecular, and the spectrum becomes
tors of the evolution superoperator,effectively insensitive to further increase of the magnitude

of JAA . The asymmetry of the calculated lineshape function
[0i(LAX / LA) / RQ / RX ]ÉF/A(2IzX { E) …results from the fact that in the presence of DD–CSA corre-

lations the relaxation properties of the transitions at v0A {
Å S0 1

T *2
0 1

2T1X

{ 1
2

2pJAXDÉF/A(2IzX { E) … . [6]6pJAA are different.

AnX Systems. In such systems already the dominating
mechanisms for nuclei of spin greater than 1

2, i.e., the Q Hence, the spectrum of the A nuclei will consist of two
mechanism, can cause breaking of magnetic equivalence. equally intense Lorentzian lines, centered at n0A { JAX/2,
The possibility of such an effect to appear stems from the and having the same width at half height, equal to
fact that none of the three reasons, discussed in the preceed- 1/(pT *2 ) / 1/(2pT1X ). The quantity T *2 is the eigenvalue
ing section, of at least partial conservation of equivalence of RQ concerned with F/A ; it is thus the perpendicular relax-
could be invoked here. Namely, ( i) quadrupolar relaxation ation time, equal to the longitudinal relaxation time, T *1 , of
matrix of group An does not commute with F 2D

A . Moreover, the isolated group An . From the discussion of the preceeding
(ii) in the presence of J-coupling between A and X neither section, involving isolated An groups relaxed by Q mecha-
FuX nor FuA are eigenoperators of the evolution superopera- nisms, it is seen that the spectrum of part A will be indepen-
tor. Finally, ( iii ) the spherical symmetry arguments em- dent of the possible cross-correlations between Q interac-
ployed in the discussion of equivalence in the isolated A2 tions at different nuclear sites. Because LAÉF/A … Å 0, it is
group do not pertain to the AnX group, even when n Å 2 evident that the spectrum is independent of the J-couplings
(see below). In what follows it is assumed that the An group within the An group. It must again be stressed that the above
is relaxed only by the Q mechanism described by matrix RQ inferences are valid only in the case where X is a nucleus
and that relaxation behavior of the nucleus X is governed of spin 1

2.
by a spherically symmetric relaxation matrix RX ( indepen- When the spectrum of part X is concerned, no simple
dent of the A spins) , the relevant eigenvalues of which, 1/ analytical expressions can be derived. Nevertheless, formal
T1X Å 1/T2X , are much smaller than 2pJAX . According to considerations similar to those outlined above allow one
these assumptions, both R Å RX / RQ and the super-Hamil- to see that the relevant subspace contains, among others,
tonian describing J-coupling between A and X have spherical operators of the form ÉI/XFs

zA … , where s Å 0, 1, 2, . . . ,
symmetry (obviously, the nonsecular components of the lat- which are produced from ÉI/X … by repeated action of LAX .

The higher powers of FzA are no longer eigenvectors of RQ .ter can be retained). One might thus wonder if the rejection
of spherical symmetry arguments, as mentioned under point Because RQ and F 2D

A do not commute, the operators pro-
duced by the action of RQ on ÉI/XFs

zA … , which also fall into(iii ) above, was not premature. However, one should remem-
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204 S. SZYMAŃSKI

TABLE 2 in the A subspace. Similarly, the subsets {QAi , i Å 1, . . . ,
Operators in A Space Describing Evolution of Magnetization 5} and {QA j , j Å 6, 7, 8} could be unitary-transformed into

of X Part of A2X System, with IA Å 1 the corresponding spherical subsets of which each would
contain a component of a rank-2 tensor (in such a spherical

Item Operator
basis the super-Hamiltonian LAX would not be diagonal) .
There are therefore no spherical symmetry constraints on1 É22)(22É

2 É21)(21É transfer of coherence between the forbidden and allowed
3 É20)(20É transitions, and the lineshape function of X nucleus can in
4 É2 0 1)(2 0 1É principle be dependent on JAA .
5 É2 0 2)(2 0 2É

Numerical calculations for A2X system, with IA Å 1, show6 É11)(11É
that the most pronounced dependence of the lineshape of X7 É10)(10É

8 É1 0 1)(1 0 1É on JAA occurs when the quadrupolar relaxation rate, T *1 ,
9 É00)(00É becomes comparable to JAX . The lineshape proves also sensi-

10 É20)(00É tive to the assumed degree of cross-correlation of quadrupo-
11 É00)(20É

lar interactions at different sites of A nuclei. Moreover, the
higher this cross-correlation, the more sensitive is the signal
shape to JAA . This can be rationalized in terms of micro-

the evolution subspace, will not in general commute with scopic symmetry factoring (5, 7) of RQ which would appear
F 2

A . Accordingly, the J-couplings between A nuclei may in the instance of perfect cross-correlation. In such an in-
become relevant. The evolution subspace describing perpen- stance, the relevant 11 1 11 block of RQ would be blocked
dicular magnetization of X is spanned by a complete set of out further into 8 1 8 and 3 1 3 independent blocks. The
orthogonal operators of the form I/X QA j , where QA j , de- latter corresponds to the three shift operators of Table 2
pending on the A spins only, are all such eigenoperators of which are formed from vectors antisymmetric under C2

( items 6–8). Then, the forbidden transitions, whose corre-FD
zA concerned with eigenvalue zero which are adapted to

the permutation (and, in fact, geometric (5)) symmetry of sponding basis operators fall to the 8-dimensional subspace
of symmetric bras and kets, could borrow intensity onlythe system.

Equivalence breaking ought to take place already in the from the six transitions of the same microscopic symmetry.
In the case of weak cross-correlation there is no microscopicsimplest system of the sort considered presently, i.e., when

the An group is composed of two nuclei of spin 1, and where factoring and the offending transitions can in principle affect
all of the remaining 9 transitions. In the latter instance thethe system’s permutation symmetry group is isomorphic

with C2 . We consider this case in some detail. As the perti- effect will be distributed more uniformly over the multiplet,
and the response of the lineshape functions to varying magni-nent operators QA j we again take the shift operators produced

from vectors of Eq. [5] . There are 11 such operators allowed tude of JAA will be less pronounced.
In Fig. 2 there are shown theoretical lineshapes of a Xby the permutation symmetry; they are listed in Table 2. In

the assumed operator basis, both LAX and LA are diagonal. nucleus scalar-coupled to two isochronous A nuclei. The
model parameters assumed in the simulations roughly corre-The only nonzero (diagonal) matrix elements of the latter

are equal to {6pJAA and are concerned with items 10 and spond to a selectively 15N-substituted azide ion, 14N15N14N0 ,
for which, due to the expected D`h symmetry of the mole-11 of Table 2. The (diagonal) elements of LAX are given as

2pJAX times the successive eigenvalues, 02, 01, 0, 1, and cule, there ought to be a substantial cross-correlation be-
tween quadrupolar interactions at the terminal sites. The2, of FzA , and the elements concerned with 0 and {1 eigen-

values are degenerate. In absence of relaxation, the spectrum lineshape variations reflecting the changes of the input values
of JAA are certainly nonnegligible in this case. There is awould consist of only such lines for which the transition

amplitudes, proportional to Tr QA j , are nonvanishing. The significant, monotonical decrease of the height of the central
peak along with a gradual departure from zero of the valuetransitions concerned with items 10 and 11 of Table 2 are

strictly forbidden in the absence of relaxation (Tr QA10 Å of ÉJAAÉ. Again, when the latter becomes large compared to
RQ , the lineshape function becomes insensitive to a furtherTr QA11 Å 0). In the static limit one could therefore observe

only 9 lines, concerned with items 1–9 of Table 2, which increase of ÉJAAÉ. In such circumstances the relevant off-
diagonal elements of RQ are strongly nonsecular, and accord-would form the familiar 1:2:3:2:1 quintet because of the

degeneracies. Quadrupolar relaxation couples the transitions ingly, the offending transitions (whose amplitudes vanish
in the static limit) become effectively decoupled from theforbidden in the static limit with the remaining transitions.

Even when, as in the case considered presently, RQ has remaining transitions. In the interpretation of experimental
spectra of this and similar systems one would face one morespherical symmetry, the coupling can be effective. Namely,

the operators QA10 and QA11 describing the forbidden transi- problem: The response of the calculated lineshape to a sub-
stantial departure from zero of the assumed value of JAAtions are components of rank-2 spherical tensors irreducible
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is scalar coupled to a spin-1
2 nucleus. Caution should be

exercised when a nearly resolved multiplet of such a nucleus
is to be dealt with, especially in an instance of high cross-
correlations between the quadrupolar interactions. When the
actual values of the J-coupling constants within the equiva-
lent group are unknown but can be expected to be large
compared with the quadrupolar relaxation rates, the seem-
ingly most natural step of setting all these values to zero
will usually be the most inappropriate. An independent as-
sessment of such couplings using unsymmetric isotopomers
may be indispensable when one wants to determine from
the signal shape the degree of cross-correlations between the
quadrupolar interactions. When isotropic media are con-
cerned, there seem to be little chances of detecting such
cross-correlations for nonisochronous quadrupolar nuclei. In
the studies on molecular models containing isochronous
groups of quadrupolar nuclei, one should be aware of the
potential bias created by magnetic equivalence breaking.

REFERENCES
FIG. 2. A comparison between theoretical spectra of the X part of an

1. H. S. Gutowsky, D. W. McCall, and C. P. Slichter, J. Chem. Phys.A2X system, with IAÅ 1, for two input values of JAA . Quadrupolar relaxation
21, 279 (1953).mechanism was assumed for the A nuclei. The displayed values of T *1 would

be the longitudinal relaxation times of the A2 group isolated from X . The 2. A. Abragam, ‘‘The Principles of Nuclear Magnetism,’’ Chap. 11,
assumed value of JAX is 7 Hz. Correlation coefficient, r , of 0.95 for the Oxford Univ. Press, London (1961).
cross-correlated Q interactions at different nuclear sites A is assumed. The 3. S. Szymański, J. Magn. Reson. 77, 320 (1988).
relaxation properties of the X nucleus are accounted for in the assumed
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